.
Design Specification

Version 1.0

21 April 2005

[image: image4.png]

Team Extreme

Jonathan Birch

Bryan Kimbro

Greg Chabala

Mark Sparks

Table of Contents

21. Introduction

21.1 System Overview

21.1.1 System Description

21.1.2 System Architecture Styles

31.1.3 Design Goals

31.1.4 Design Tradeoffs

41.2 Documentation Guidelines

41.3 Definitions, Acronyms, and Abbreviations

51.4 References

51.5 Overview of the Remainder of the Document

52. Proposed System Architecture

52.1 Subsystem Decomposition

62.1.1 Knowledge Base Creation System

62.1.2 Web Publishing Development System

62.1.3 File Storage System

62.1.4 Knowledge Base Verification

62.2 Hardware/Software Mapping and Reuse

62.3 Persistent Data Management

92.4 Access Control and Security

92.5 Global Software Control

102.6 Boundary conditions

103. User Interface

134. Subsystem Interfaces

155. Packages and File Organization

156. Class Interfaces

167. Appendix

167.1 Writing Credits

167.2 References

1. Introduction

1.1 System Overview
1.1.1 System Description

Our client, Dr Yu, has asked us to update the FreeShell expert system shell currently used in CS 490 / 584. He intends to have students use this software to generate expert systems for exploration and class assignment purposes.

An expert system is a computer software system that uses a body of information, a knowledge base, and an inference engine to answer questions and give advice to users. An expert system shell is an inference engine that can be applied to different knowledge bases to provide expert system functionality.
FreeShell, as it currently exists, consists of two parts. A knowledge base editor with a GUI is used by expert system developers to create and edit knowledge bases. A separate GUI is tied to an inference engine and can be used by expert system developers or casual users to “run” a knowledge base that has been developed using the editor. Certainty factor algebra is used in this second system to improve the system’s results.
In FreeShell Live the GUI for executing knowledge bases will be removed. Our client has requested that we replace this aspect with a function in the knowledge base editor for publishing developed knowledge bases as stand-alone expert systems that can be accessed through a web browser. Additionally, he has asked that we correct various known bugs and usability issues in the editor. We will also be adding consistency and completeness checking for knowledge bases. This system will be provided to our client free of charge.
1.1.2 System Architecture Styles
Similar to the original FreeShell, the knowledge base editor developed for FreeShell Live will be designed around a monolithic architecture. Because the software is intended to be used on a one user / one instance / one data basis, this architecture is appropriate.
1.1.3 Design Goals

The design goals for our system are as follows (listed from highest to lowest priority):

· Feasibility – Our team must have the updates to the knowledge base editor and the publish-to-web functionality completed by the end of the 2005 fall semester.
· Usability – The development environment should be user friendly so that users can easily create knowledge bases with little help. The GUI presented by published expert systems must be simple enough to be used by casual users with little computer experience.
· Utility – The system should support the work of the user in creating and running expert systems.
· Reliability – The inference engine should not produce results inconsistent with the rule sets in the knowledge base.

· Extensibility – The client and / or future CS teams should be able to add new functionality without having to make extensive structural changes.

· Readability – All code must be well-commented and readable.

· Modifiability – The client and / or future CS teams should be able to modify our system at a later date if desired.

· Robustness – The system should be able to handle invalid user input and display appropriate error messages.

Our highest priorities are on designing an easy to use system that meets our client’s needs so it can be used in his CS 490 / 584 class.

1.1.4 Design Tradeoffs

Because feasibility and usability are the two highest priorities of the FreeShell Live project, other design goals may be sacrificed for their sake as necessary.
Because FreeShell live will be developed using a modified evolutionary delivery lifecycle model, different features of the system will be added to consecutive versions, starting with the most vital. If it appears that it will not be possible to implement all features before the intended deadline, additional revision cycles, and their associated features, may be canceled so that a deliverable package can be completed.
We do not consider efficiency to be a high-priority design goal of the FreeShell Live system. Various aspects of the system may be constructed in ways that do not emphasize this feature. For instance, knowledge base files will be stored in a user-editable flat text form. This is less efficient than a binary file format storing the same information would be, but this design increases the usability of the system.

1.2 Documentation Guidelines
Variable, class, and procedure definitions laid out in this document will match the conventions established in our team’s coding standards document.
1.3 Definitions, Acronyms, and Abbreviations

backward chaining:
inference method that starts with the goal, working backwards until either the goal has been verified or all sub-goals have been investigated; also called goal-driven

certainty factor:
numerical weight given to a fact or relationship to indicate the confidence the user has in the fact or relationship; values range from -1 (strong disbelief) to +1 (strong belief). A value of 0 indicates uncertainty

certainty factor algebra:
refers to the formulas involved in combining certainty factors from multiple rules

expert system XE "expert system" :
computer program that uses a knowledge base of human expertise to solve problems or give advice; has two parts, a knowledge base and an inference engine

expert system XE "expert system" shell:

stand alone inference engine that can be used

with different knowledge bases

Exsys CORVID XE "CORVID" :

expert system XE "expert system" shell currently used by Dr. Yu in

his expert systems class

forward chaining:
inference method that starts with the facts and works forward until a conclusion is reached; also called data-driven

GUI:

graphical user interface

inference engine:
computer program that derives new facts and answers questions by applying inference methods on the knowledge base

knowledge base:
stores problem solving knowledge for a particular
 domain, usually in the form of production rules

production rules:
rules that are interpreted to determine what the output should be given a set of inputs

uncertainty:
refers to a value that cannot be determined by questioning (i.e., the user doesn’t know the answer); expert system XE "expert system" must be able to handle this

1.4 References
Information presented here may also reference information in the Project Plan, Problem Statement and Requirements Specification of this project.
Variable, class, and procedure definitions laid out in this document match conventions established in our team’s coding standards document.
1.5 Overview of the Remainder of the Document

The remainder of this document lays out the design we have developed for the FreeShell Live software system. The proposed system architecture, user interface, and logical decomposition will be described.
2. Proposed System Architecture

2.1 Subsystem Decomposition

The current FreeShell knowledge base editor is constructed using a pure object-oriented methodology. Rather than using controls as a front for an underlying system of data structures, the controls themselves are used to store the volatile data of the system. Hence, the subsystem decomposition of the existing software is identical to the logical division of the interface.
Although FreeShell live will be built using more standard methodologies, most of the existing system will be preserved in its current form.

2.1.1 Knowledge Base Creation System

This subsystem provides expert users the ability to create expert systems as well as the ability to edit expert systems. This functionality is provided by a GUI with options to open an existing expert system or create a new one. Once an expert system is in focus, rules and variables can be edited, deleted, and created through the user interface.
2.1.2 Web Publishing Development System

This subsystem will provide expert users the ability to publish knowledge bases as stand-alone HTML expert systems.
2.1.3 File Storage System

An independent system will be defined for the saving and loading of knowledge base files. This system will improve the file system in the existing FreeShell software by working with human-readable files capable of modification in an external text editor.

2.1.4 Knowledge Base Verification
A system for ensuring the validity of knowledge bases will be incorporated into FreeShell live. This system will perform contradiction checking as users create rules and will allow users to perform completeness checking.
2.2 Hardware/Software Mapping and Reuse
No extraordinary hardware, software, or off-the-shelf components are needed for FreeShell Live to function correctly and completely. Intended mapping of software will consist simply of the knowledge base editor installed on the end user’s PC. This PC should be running a version of Windows, Win98 or later.
2.3 Persistent Data Management

Two types of persistent data will be associated with the FreeShell Live system.

Knowledge base files will be savable from the knowledge base editor as flat text files. Each of these text files will the contain lists of variables and rules that define a specific knowledge base. With a proper understanding of the syntax used, users of the FreeShell Live system will be able to edit these files directly to modify knowledge base. Knowledge base files will also be editable through the graphical interface of the knowledge base editor.

When users have completed knowledge based to their satisfaction, they will be able to publish them as stand-alone expert systems. These independent systems will be generated as HTML and JavaScript constructs. Published expert systems will be executable using standard web browsers, but the knowledge base editor will not have the capability of reopening these files.

The language used within knowledge base files will be constrained by the following grammar:

<knowledge_base> := VARS: <vars> RULES: <rules>

<vars> := <var_with_type> | <vars><var_with_type>

<var_with_type> := <var>, <var_type>

<var_type> := GOAL | INITIAL <question> | ASKABLE <question> | NOT_ASKABLE

<question> := "<question_form>" | ""

<question_form> := <valid_name> | <question_form> <question_form> | <symbol>

<symbol> := . | ! | @ | # | $ | % | ^ | & | * | (|) | { | } | [|] |

 ~ | < | > | ? | : | ; | \ | / | = | | | + | - | '

<var> := <static_list> | <bool> | <range>

<static_list> := <list_name>, STATIC_LIST, 1 <list_item> |

 <list_name>, STATIC_LIST, 2 <list_item> <list_item> |

 <list_name>, STATIC_LIST, 3 <list_item> <list_item> <list_item> |

 .

 .

 .

 <list_name>, STATIC_LIST, 255 <list_item> <list_item> <list_item> ... <list_item>

<list_name> := <valid_name>

<list_item> := <valid_name>

<bool> := <bool_name>, BOOLEAN

<range> := <range_name>, NUMERIC, FROM <range_low> TO <range_high>

<bool_name> := <valid_name>

<range_name> := <valid_name>

<list_length> := <int>

<range_low> := <neg>

<range_high> := <neg>

<neg> := <int> | -<int>

<valid_name> := <alpha> | <valid_name><alpha>

<alpha> := A | B | C | D | E | F | G | H | I | J | K | L | M |

 N | O | P | Q | R | S | T | U | V | W | X | Y | Z |

 a | b | c | d | e | f | g | h | i | j | k | l | m |

 n | o | p | q | r | s | t | u | v | w | x | y | z | <digit> | _

<digit> := 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0

<int> := <digit> | <int><digit>

<rules> := <rule> | <rules><rule>

<rule> := IF <premises> THEN <conclusions>

<premises> := <or_premises> | <and_premises>

<or_premises> := <premise> | <or_premises> OR <premise>

<and_premises> := <premise> | <and_premises> AND <premise>

<premise> := <bool_premise> | <range_premise> | <list_premise>

<bool_premise> := <bool_name> = <bool_value> | <bool_name> != <bool_value>

<bool_value> := TRUE | FALSE

<range_premise> := <range_name> <operator> <neg>

<operator> := = | != | < | <= | > | >=

<list_premise> := <list_name> = <list_item> | <list_name> != <list_item>

<conclusions> := <conclusion_with_value> | <conclusions>, <conclusion_with_value>

<conclusion_with_value> := <conclusion> <CF_value>

<CF_value> := <CF_number> | -<CF_number>

<CF_number> := <digit> | <digit><digit> | <digit><digit><digit> | 1000

<conclusion> := <bool_conclusion> | <range_conclusion> | <list_conclusion>

<bool_conclusion> := <bool_name> = <bool_value>

<range_conclusion> := <range_name> = <neg>

<list_conclusion> := <list_name> = <list_item>
2.4 Access Control and Security

The FreeShell Live system will maintain only the simplest security. The expert system interface will be used by the expert system designer and may be used to edit expert systems and publish them. Expert system users will only be accessing the published expert systems, which they will not be able to edit.
	
	Expert System Interface
	Published Expert System

	ExpertSystemDesigner
	AddRule()

AddVariable()

EditRule()

EditVariable()

DeleteRule()

DeleteVariable()
Publish()
	Run()

	ExpertSystemUser
	
	Run()

Figure 1 - Access Control Matrix
2.5 Global Software Control
Both the knowledge base editor and the produced expert systems will use an event-driven control model. This is appropriate, as both will have user interaction as their chief function, and both will incorporate an object-oriented design.
2.6 Boundary conditions
Initialization: The application will be initialized when the user opens the executable.

Termination: The application will be terminated when the user closes the program. The user will be queried as to whether unsaved changes to an open knowledge base should be saved before exiting the system.

Failure: Any unsaved changes to a knowledge base will be lost upon a crash of the knowledge base editor.
3. User Interface

Below is a series of screenshots of what the new user interface will look like. Changes from the original FreeShell interface have been noted in the descriptions.

[image: image1.png]‘M Freeshell Live

| Variable Organizer
Name

Run

[Rule Organizer

EOX)

Figure 2 - Knowledge Base Editor
The separate windows of the rule and variable organizers used in the existing FreeShell will be replaced with a single, non-MDI main window. This window will encompass the functions of the two previous forms. The Add, Edit, and Delete buttons in the “Variable Organizer” section will allow a user to add, edit, or delete variables in a knowledge base. Similarly, the Add, Edit, and Delete buttons in the “Rule Organizer” section will provide the functionality of adding, editing, or deleting rules from a knowledge base.
The rule editing feature is not present in the original FreeShell, but will be added to FreeShell Live at our client’s request. Also, the If / Then boxes will incorporate a scrolling capability so a user can scroll down to see all of statements that do not entirely fit in the viewing windows.
[image: image2.png]‘M Rule Creator

rif
age

hairColor

sex

birthday
address
phoneNumber
maritalStatus

Select an operator

" Then

age
hairColor

sex

birthday
address
phoneNumber
maritalStatus

Select an operator

;l

Figure 3 – Rule Creator

The interface of the Rule Creator will be modified dramatically from the previous version of FreeShell. Previous versions of FreeShell allowed for the creation of erroneous or invalid rules. The rule creation interface of FreeShell Live will be modified to entirely prevent this issue.

[image: image3]
Figure 5 – Add Variable

The interface of the Variable Editor will almost exactly match that of the original FreeShell. The only change made to this interface will be the replacement of the variable class check boxes with a collection of more easily understandable radio buttons.
4. Subsystem Interfaces
· Knowledge Base Creation System
The existing aspects of the FreeShell knowledge base editor are logically grouped into the knowledge base creation system. This system is essentially an interface embodying a set of functionality in the methods of its controls.

Although the only formal division of the knowledge base creation system is the separation of functionality between controls and forms, the basic functions of the system can be logically divided into two areas.

One of these areas, the variable editing system, is built around an AxListView control which is used as a repository for volatile variable data. Function buttons and dialogs associated with this portion of the knowledge base creation system provide functionality associated with the creation, deletion, and editing of variables.

The rule editing system, the other main aspect of the knowledge base creation system, is built around a second AxListView control. The function buttons and dialogs associated with this portion of the knowledge base creation system provide functionality associated with the creation, deletion, and editing of rules.

· Web Publishing System

The web publishing system will take the data associated with a knowledge base and generate an HTML file containing JavaScript that simulates the function of the associated expert system.

This system will essentially consist of a single “Publish” button which will pull data concerning the current loaded expert system from the controls in the knowledge base creation system and use it to generate a stand-alone expert system file.

The specific working of the web publishing system remains an open design question. We intend use our prototype to explore one possible solution to this aspect of the system.

· File Storage System

We will replace the existing file storage functions of FreeShell with a new file storage system that will allow for the permanent storage of a knowledge base in a human-readable flat text file.

Within this text file, variables will be listed separately with their names and type information. Rules will be expressed in an if-then form. If edited properly, knowledge base files will have the potential of being reopened in the knowledge base editor after alteration.
This system will have three buttons. The “Open” button will load in data from a knowledge base file into the controls of the knowledge base creation system. The “Save” button will take the data from these controls and use it to create a knowledge base file. The “Save As” button will also pull data from the knowledge base creation system’s controls to save a knowledge base file, but will always prompt the user for a new file name, even on repeated saves.
During file loads a syntax check will be performed on the knowledge base file. If a syntax error is detected, a dialog will be displayed to inform the user of the line number of the first syntax error found.
· Knowledge Base Verification
A system for ensuring the validity of knowledge bases will be incorporated into FreeShell live.

A contradiction checking function will warn users during rule creation if they have created rules that directly contradict one another. Specifically, when users try to create a rule that contradicts an existing rule, a warning message box will be displayed explaining the problem to the user and the interface will return to the ‘Add Rule’ dialog.
A completeness checking function will inform users whether a knowledge base they have created is complete, and will be contained within a ‘Check for Completeness’ button. In the case that a knowledge base is not complete, this button will cause a dialog to be displayed explaining the nature of the incompleteness.
5. Packages and File Organization

The FreeShell live source will initially be divided between two distinct packages. One of these will define the interface and underlying code for the knowledge base editor. The code for this package will also encompass the necessary routines for managing the editable file system.

The other package will define the publish-to-web functionality. This will define the conversion process from the data structures used by the editor to store a knowledge base and the published expert system HTML and JavaScript code.

Both of these packages will have a few files in common to define a unified data structure format for the storage of knowledge base information in memory. This shared data structure format will be used as an interface between the two systems after the merge of the publish-to-web and knowledge base editor subprojects.

6. Class Interfaces

No formal classes are defined in FreeShell Live, and no class interfaces need be specified.
7. Appendix

7.1 Writing Credits

Jonathan Birch: Sections 1, 2.1, 2.3, 2.5, 2.6, 4

Mark Sparks: Sections 2.1, 2.2, 3, 4

Bryan Kimbro: Sections 1.2, 3

Greg Chabala: Sections 2.3, 2.4, 5, 6

Document revised and reviewed by entire team.

7.2 References

Exsys Inc.

September 2003, http://www.exsys.com

Harmon, Maus, and Morrissey. Expert Systems Tools and Applications

New York: John Wiley & Sons, Inc., 1988

Jackson, Peter. Introduction to Expert Systems

England: Addison Wesley Longman Limited, 1998

Bruegge, Bernd, and Dutoit. Object-Oriented Software Engineering

New Jersey: Prentice-Hall Inc., 2000

Case Bradley, Julia, and Millspaugh. Programming in Visual Basic 6.0

New York: McGraw-Hill Irwin, 2002

Yu, Xudong, class notes from Artificial Intelligence

Spring 2003

Yu, Xudong, class notes from Expert Systems

Summer 2003

Hermes, Mike, et al. Design Specification, 2003. FreeShell team

documents from the previous project.

- 7 -

[image: image5.png]‘Mvariable Editor

Name: Variable Type:

[= [Numeric Range

Question:

[What is the age of the patient? © Initial Askable
© Non-lnitial Askable
 Goal

Please Specify a Numeric Range

From |0 To [120

